Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The oxygen reduction reaction (ORR) is a critical process in energy conversion systems, influencing the efficiency and performance of various devices such as fuel cells, batteries, and electrolyzers. Perovskite-supported metal materials (metal/perovskite) offer several advantages as ORR electrocatalysts, including strong metal-support interactions, oxygen vacancy formation in the perovskite lattice, and synergistic triple-phase boundary (TPB) activity at the interface. Despite their significance, the mechanistic understanding of ORR on metal/perovskite catalysts remains incomplete, particularly at metal/perovskite interfaces. This study investigates ORR on BaZrO3 (BZO) perovskite-supported metal clusters (Pt or Ag) using density functional theory (DFT) to unravel critical insights into charge redistribution at the metal/BZO interface. Energy profiles for elemental steps along two different ORR pathways—oxygen adsorption on the metal cluster surface and direct oxygen adsorption at the TPB—were calculated to explore the effects of different active sites. The results provide a deeper understanding of ORR on metal/perovskite catalysts, emphasizing the role of interfacial interactions and pathway-dependent reaction mechanisms. This work paves the way for guiding the design of high-performance electrocatalysts for ORR in terms of composition, interface design, and local environment modification for a broad range of energy applications.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available April 15, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
Frequency-domain probe beam deflection (FD-PBD) is an experimental technique for measuring thermal properties that combines heating by a modulated pump laser and measurement of the temperature field via thermoelastic displacement of the sample surface. In the conventional implementation of FD-PBD, the data are mostly sensitive to the in-plane thermal diffusivity. We describe an extension of FD-PBD that introduces sensitivity to through-plane thermal conductance by immersing the sample in a dielectric liquid and measuring the beam deflection created by the temperature field of the liquid. We demonstrate the accuracy of the method by measuring (1) the thermal conductivity of a 310 nm thick thermally grown oxide on Si, (2) the thermal boundary conductance of bonded interface between a 3C-SiC film and a single crystal diamond substrate, and (3) the thermal conductivities of several bulk materials. We map the thermal boundary conductance of a 3C-SiC/diamond interface with a precision of 1% using a lock-in time constant of 3 ms and dwell time of 15 ms. The spatial resolution and maximum probing depth are proportional to the radius of the focused laser beams and can be varied over the range of 1–20 μm and 4–80 μm, respectively, by varying the 1/e2 intensity radius of the focused laser beams from 2 to 40 μm. FD-PBD with liquid immersion thus enables fast mapping of spatial variations in thermal boundary conductance of deeply buried interfaces.more » « less
-
Dense silver (Ag) cathodes with defined triple phase boundary (TPB between the interface of electrolyte, electrode, and gas) lengths (LTPB) and electrode areas (AELT) were fabricated by photolithography and E-beam evaporation over a proton conducting BaZr0.4Ce0.4Y0.1Yb0.1O3−δ (BZCYYb4411) electrolyte. A bi-layer lift-off resist method appears to be more versatile than a single layer lift-off resist method for successful patterned cathode fabrication. The electrochemical behaviors of the patterned Ag cathodes over the BZCYYb4411 electrolyte were tested by electrochemical impedance spectroscopy (EIS) at different temperatures in atmospheres with different concentrations of O2 and H2O. The results were processed using Distribution of Relaxation Times (DRT) and reaction order analyses and also fitted to equivalent circuits. The directions for future work on patterned electrodes with different LTPB and AELT and theoretical calculations to gain further insights into the kinetics and mechanism of the cathode oxygen reduction reaction (ORR) over proton conducting electrolytes are pointed out.more » « less
-
BaCo0.4Fe0.4Zr0.1Y0.1O3−σ (BCFZY) is a proton, oxygen-ion, and electron-hole conducting cathode material for intermediate temperature solid oxide fuel cells. Its electrode reaction mechanism in air with moisture is not well understood. In this study, three types of symmetrical cells with the same BCFZY cathode were fabricated over three related proton conducting electrolytes: BaZr0.8−xCexY0.1Yb0.1O3−δ (x = 0.1, 0.4, and 0.7). The cathode shows similar performance over three different electrolytes in dry air but different responses to moisture introduction. The differences are hypothesized to relate to the mutual diffusion at the cathode/electrolyte interface. Such a hypothesis is supported by different techniques such as XRD Rietveld refinement of BCFZY cathode in mixtures with different electrolytes after firing, energy-dispersive X-ray spectroscopy (EDS) line scanning for element concentration distribution at the cathode/electrolyte interface, as well as electrochemical test for a related BaCoFeO-type cathode with Zr replaced by Ce.more » « less
-
The use of bioelectronic devices relies on direct contact with soft biotissues. For transistor-type bioelectronic devices, the semiconductors that need to have direct interfacing with biotissues for effective signal transduction do not adhere well with wet tissues, thereby limiting the stability and conformability at the interface. We report a bioadhesive polymer semiconductor through a double-network structure formed by a bioadhesive brush polymer and a redox-active semiconducting polymer. The resulting semiconducting film can form rapid and strong adhesion with wet tissue surfaces together with high charge-carrier mobility of ~1 square centimeter per volt per second, high stretchability, and good biocompatibility. Further fabrication of a fully bioadhesive transistor sensor enabled us to produce high-quality and stable electrophysiological recordings on an isolated rat heart and in vivo rat muscles.more » « less
-
Abstract High thermal conductivity electronic materials are critical components for high-performance electronic and photonic devices as both active functional materials and thermal management materials. We report an isotropic high thermal conductivity exceeding 500 W m −1 K −1 at room temperature in high-quality wafer-scale cubic silicon carbide (3C-SiC) crystals, which is the second highest among large crystals (only surpassed by diamond). Furthermore, the corresponding 3C-SiC thin films are found to have record-high in-plane and cross-plane thermal conductivity, even higher than diamond thin films with equivalent thicknesses. Our results resolve a long-standing puzzle that the literature values of thermal conductivity for 3C-SiC are lower than the structurally more complex 6H-SiC. We show that the observed high thermal conductivity in this work arises from the high purity and high crystal quality of 3C-SiC crystals which avoids the exceptionally strong defect-phonon scatterings. Moreover, 3C-SiC is a SiC polytype which can be epitaxially grown on Si. We show that the measured 3C-SiC-Si thermal boundary conductance is among the highest for semiconductor interfaces. These findings provide insights for fundamental phonon transport mechanisms, and suggest that 3C-SiC is an excellent wide-bandgap semiconductor for applications of next-generation power electronics as both active components and substrates.more » « less
An official website of the United States government
